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1 Preface

These notes are based around the exposition of a sequence of connected ideas: ∆1
1 and Π1

1 and Σ1
1 sets;

admissible structures; ωck
1 ; recursive well founded relations; ordinal analysis of trees; Barwise compactness;

Gandy-Harrington forcing. I am not going to discuss applications of these techniques – though there are
striking applications such as Harrington’s proof of Silver’s theorem, or the Harrington-Kechris-Louveau
dichotomy theorem, or Louveau’s sharp analysis of ∆1

1 ∩ Π∼
α
0 . In these notes I am simply going to develop

the techniques from the ground up, in the hope that this will provide a useful calculative tool.
In the background is a philosophy: That in certain situations the right way to understand the structure

of some pointclasses is to understand them in the context of an appropriate inner model which still reflects
their behaviour, and has some degree of absoluteness. For instance one could try to understand Σ1

2 sets
using Gödel’s constructible universe L, and there is some truth to the idea that Σ1

2 shares some structural
properties with L. We can understand Borel sets by simply going to any model of set theory whose ω is
isomorphic to the real ω. Perhaps at the level of Π1

3 we should consider sufficiently iterable inner models of
a Woodin cardinal. At the level of Π1

1, the right inner models are well founded models of KP – that is to say,
admissible structures. To illustrate this, the first theorem we will head towards is Spector-Gandy, which, in
its simplest form, states that the Π1

1 subsets of ω are precisely those Σ1 definable over the least admissible
structure. The specific theorems such as Spector-Gandy are less important than the method, which is to
reduce questions about Borel and projective compexity of sets of reals to set theoretical calculations over
inner models. In the end we will reproduce all the basic uniformization and separation theorems of “classical”
descriptive set theory in about a dozen pages, but this will be at the cost of not repeating proofs which closely
resemble earlier arguments and treating all set theoretical calculations involving quantifier manipulation as
“routine” exercises.

Fundamentally these exercises probably are routine calculations, but they are not necessarily at all routine
for someone new to the area. I apologize, but it is partly an inevitable consequence of trying to give a full
treatment of the entire body of theory in a concise form.

2 Prerequisites

Some knowledge of recursion theory is necessary, but probably not much more than one would learn as part
of a course covering the Gödel incompleteness theorems, and certainly any one semester course in recursion
theory should be amply sufficient. The reader also needs to be able to manipulate quantifiers, in the sense
of placing formulas in some kind of normal form with the minimal number of alternations of ∃’s and ∀’s in
the front; I leave all those manipulations as exercises, but it is possible that anyone who has gone through
the proof of the completeness theorem will already have the basic idea. Finally, I assume an ability to work
with set theoretical operations like transfinite recursion. Optimistically one might suppose this is not much
beyond what one would learn in going through the proof L |= CH.
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3 Comparison with the bold faced version

I will start with some purely classical theorems. Even for people who have seen these before, there are some
points I want to make about the proofs.

Definition T ⊂ ω<ω × ω<ω is said to be a tree if

1. (u, v) ∈ T implies lh(u) = lh(v) (they have the same length as finite sequences); and

2. T is closed under subsequences, in the sense that if (u, v) ∈ T and ℓ < lh(u) then (u|ℓ, v|ℓ) ∈ T .

We then let [T ], the set of branches through T , be the set of all (x, y) ∈ ωω such that

∀n(x|n, y|n) ∈ T,

where here x|n = (x(0), x(1), ..., x(n − 1)). We let p[T ] be the projection of [T ] – that is to say the set of x
for which there exists a y with (x, y) ∈ [T ]. We then say that a set is Σ1

1∼
, or analytic, if it equals p[T ] for

some tree T .

Notation For (u, v), (u′, v′) ∈ T , I will write (u, v) < (u′, v′) if u is strictly extended by u′ and v is strictly
extended by v′. I write (u, v) ⊥ (u′, v′) if neither extends the other.

Theorem 3.1 p[T ] is empty if and only if T has a ranking function. That is to say, some ρ : T → δ, some
ordinal δ, with ρ(u, v) > ρ(u|ℓ, v|ℓ) all (u, v) ∈ T , ℓ < lh(u).

Proof This is a routine application of transfinite recursion.
We define a transfinite increasing sequence of subsets, T0 = ∅ ⊂ T1 ⊂ ... ⊂ Tω ⊂ Tω+1..., and a

corresponding sequence of functions
ρα : Tα → α,

with Tα+1 = {(u, v) ∈ T : ∀(u′, v′) ∈ T ((u, v) < (u′, v′) ⇒ (u′, v′) ∈ Tα)}, and for (u, v) ∈ Tα+1

ρα+1(u, v) = sup{ρα(u′, v′) + 1 : (u′, v′) ∈ T, (u, v) < (u′, v′)}.

At limit stages we take unions.
If, after exhausting this process, we end up with some Tδ = T , and a total ranking function on T , then

clearly any infinite branch through T will give an infinite descending sequence of ordinals, and a contradiction.
Conversely, if we finally finish with Tδ 6= T and there is no hope to extend the process further (basically,

Tδ+1 = Tδ), then for any (u, v) ∈ T \ Tδ we can find a (u′, v′) ∈ T \ Tδ with (u, v) < (u′, v′). 2

Theorem 3.2 (Perfect set theorem for Σ∼
1
1.) Let T be a tree. Then either p[T ] is countable, or it contains

a homeomorphic copy of 2ω, and hence has cardinality 2ℵ0 .

Proof This is actually similar to the last proof.
We define an increasing transfinite sequence of subsets, (Tα), but the specifics of the definition changes

slightly. We let Tα+1 be the set of (u, v) ∈ T \ Tα such that there do not exist extensions which are
incompatible in the first coordinate:

(u, v) < (u0, v0), (u1, v1),

u0 ⊥ u1.
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In the case that the process terminates with some Tδ 6= T we have that every node in Tδ 6= T admits ex-
tensions, again in Tδ 6= T , which are incompatible. From this it is routine to construct an array (us, vs)s∈2<ω

such that (us, vs) < (ut, vt) when s < t and us ⊥ ut when s ⊥ t. It is relatively routine to verify that

ϕ : 2ω → p[T ]

z 7→
⋃
uz|n

provides a homeomorphic embedding.
On the other hand, if the process terminates with Tδ = T then first of all note that δ is a countable

ordinal, since T is countable and it is impossible to find a strictly increasing ω1 sequence of countable subsets
of a countable set. Note more over that each (u, v) ∈ T has a unique αu,v such that (u, v) ∈ Tα+1 \ Tα, and
moreover (u, v) < (u′, v′) implies αu,v ≥ αu′,v,.

Thus for every (x, y) ∈ [T ] we can find a smallest α such that at every n

(x|n, y|n) /∈ Tα.

Fixing this α and some n such that for all ℓ ≥ n we have (x|n, y|n) ∈ T′α+1\Tα, and letting (u, v) = (x|n, y|n),
we see that x has a privileged position in Tα: It is the only remotely plausible x′ ⊃ u for which there might
exist a y′ ⊃ v with (x′, y′) /∈ Tα.

Thus, every x ∈ p[T ] will be definable from some finite pair of sequences (u, v) over some Tα. Since there
are only countably many possible choices for (u, v) and α, we indeed obtain the projection of T countable.
2

To keep things simple, we just started out with the definition of Σ∼
1
1 sets for subsets of ωω, but it naturally

extends.

Definition T ⊂ (ω<ω)n+1 is said to be a tree if

1. (u0, u1, ..., un) ∈ T implies lh(u0) = lh(u1) = ... = lh(un);

2. is closed under subsequences, in the sense that if (u0, u1, ...) ∈ T and ℓ < lh(u0) then (u0|ℓ, u1|ℓ, ...) ∈ T .

We then let [T ], the set of branches through T , be the set of all (x0, x1, ..., xn) ∈ (ωω)n+1 such that

∀ℓ(x0|ℓ, x
1|ℓ, ...) ∈ T.

We let p[T ] be the projection of [T ]: the set of (x0, x1, ..., xn−1) for which there exists a y with (x0, ..., xn−1, y) ∈
[T ]. We then say that a subset of (ωω)n is Σ1

1∼
, or analytic, if it equals p[T ] for some tree T .

Theorem 3.3 (Kunen-Martin for Σ∼
1
1) A analytic well founded relation on 2ω has countable rank. In other

words, if T ⊂ (ω<ω)3 is a tree and R = p[T ] is well founded relation in the sense that there is no infinite
sequence (xn)n∈ω such that at each n

xn+1Rxn,

then we can find a countable ordinal δ and
ρ : 2ω → δ

with ρ(x) = sup{ρ(y) + 1 : yRx}.
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Proof First begin with the canonical ranking function

ρ : 2ω → κ,

ρ(x) = sup{ρ(z) + 1 : zRx}.

Our whole task comes down to showing the range of ρ is bounded below ω1.
Define the relation R∗ on ⋃

n∈ω

(ωn)2n+1,

with
(u0, s1, u2, ..., u2n)R

∗(v0, t1, v2, ..., v2m)

provided:
(i) n = m+ 1;
(ii) u2k|m = v2k for k ≤ m;
(iii) s2k−1|m = t2k−1 for k ≤ m;
(iv) at each k < n we have

(u2k+2, u2k, s2k+1) ∈ T.

Note then that (iv) along with the earlier conditions also gives that at each k < m, (v2k+2, v2k, t2k+1) ∈ T .
We then obtain that R∗ is also wellfounded, since in some sense R∗ is the tree of partial attempts to find

an infinite descending chain through R. Since it is a well founded relation on a countable set, we can find a
ranking function ρ∗ with range some countable ordinal δ.

If we have a descendingR-chain, x0, x1, ...xn+1, with corresponding witnesses y0, ..., yn, each (xi+1, xi, yi) ∈
[T ], then we have at each ℓ ≤ n that

(x0|ℓ+1, y
0|ℓ+1, x

1|ℓ+1, ..., x
ℓ+1|ℓ+1)R

∗(x0|ℓ, y
0|ℓ, x

1|ℓ, ..., x
n+1|ℓ).

Let R+ be the well founded relation on finite sequences of reals defined by

(x0, y0, ..., xn, yn, xn+1)R+(x0, y0, ..., yn−1, xn)

if at each ℓ ≤ n
(xℓ+1, xℓ, yℓ) ∈ T.

Let ρ+ be the canonical ranking function for R+. It then follows that

ρ+(x0, y0, ..., xn, yn, xn+1) ≤ ρ∗(x0|n, y
0|n, ..., x

n|n, y
n|n, x

n+1|n).

But finally, if we have a sequence (x0, y0, ..., yn−1, xn) and at each ℓ < n

(xℓ+1, xℓ, yℓ) ∈ T,

then ρ(xn) = ρ+(x0, y0, ..., yn−1, xn). 2

There is a key thing about all these proofs: The main driving force is transfinite recursion, and the
legitimacy of the transfinite recursion is based on Σ1 collection. Here a formula in set theory is Σ0 if it only
contains bounded quantifiers of the form ∃x ∈ y or ∀x ∈ y. It is Σ1 if it has the form

∃x1∃x2...∃xnϕ(~x, ~y),

for ϕ Σ0. Σ1 collection is the statement that whenever we have a Σ1 ϕ and X is a set such that

∀x ∈ X∃yϕ(x, y),
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then we can find a set Y such that
∀x ∈ X∃y ∈ Y ϕ(x, y).

(In actual fact, under even very modest background set theoretical assumptions, Σ1 collection follows from
Σ0 reflection, but I am following the usual nomenclature.) I do want to allow parameters in my notion of
Σ1 formula in this definition of Σ1 collection.

In all the above arguments, we could try to build the relevant ranking function or ascending sequences
of subsets T0 ⊂ T1 ⊂ ...Tω.... inside a model containing T and satisfying Σ1 collection. I claim that in the
case that the ranking function exists, in 3.1, 3.3, or that there is finally a Tδ = T in 3.2, that would be same
inside any reasonable inner model of Σ1 collection.

Let us just consider the structure of the argument in theorem 3.1. Suppose the tree T is indeed well
founded, and let ρ be the canonical ranking function in V . Suppose M is a transitive model of Σ1 reflection
and some basic set theoretical operations like Σ0 separation. We can go ahead and try to define the partial
sequence of approximations

ρα : Tα → α

inside M . Those definitions are very transparent, and at limit stages it is a straightforward application of
collection for M to likewise take the unions as we do in V . The whole question mark here, however, is
whether M has enough ordinals to complete the transfinite recursion to the point that it exhausts the entire
tree.

For a contradiction, let (u, v) in T have minimal ρ value subject to the requirement that there is no
(ρα, Tα) ∈M with (u, v) ∈ Tα – in other words, let ρ(u, v) be minimized subject to the requirement that M
cannot find a partial ranking function which has (u, v) in its domain.

It actually follows that ρ(u, v) equals the supremum of the ordinals in M , though this is not a critical
point for us at this stage.

Now the minimality of ρ(u, v) implies that for all (u′, v′) ∈ T with (u, v) < (u′, v′) we have some
(ρα, Tα) ∈ M with (u′, v′) ∈ Tα. But the set of proper extensions of (u, v) in T wil be a set in M . So at
this stage we can apply Σ1 collection to that set inside M and the ranking functions. Hence we can find a
set Y ∈ M such that for all (u′, v′) ∈ T with (u, v) < (u′, v′) we have some (ρα, Tα) ∈ Y with (u′, v′) ∈ Tα.
But M can take the union of all the partial ranking functions of the form (ρα, Tα) inside Y . This will give
a single ranking function which exists inside M and ranks all proper extensions of (u, v) – and then there is
nothing to stop M taking the process one further step and capturing (u, v) in its domain.

Before we push on, I want to make a couple of technical comments. At this stage they may seem like
splitting hairs, since I have as yet offered absolutely no evidence at all that we should have a special affection
for the theory of Σ0 separation and Σ1 collection. Later on, though, they will be totally critical for a whole
sequence of calculations.

First, a slight caution. What this argument shows is that from Σ0 separation and Σ1 collection the
existence of a ranking function in V will pass down to M . It does not show that the existence of an infinite
branch through T will pass down to M . The problem is that in the case that T is illfounded and M tries to
set up the transfinite recursion (ρα, Tα)α of partial rankings, they might continue out through the ordinal
height of M – and then without Σ1 separation, we will not be able to mimic the infinite branch argument
which works inside V .

On the other hand, in the case that T really is well founded, and there is a ranking function on all of T ,
we saw above that each point inside T is ranked at some stage inside M . That in particular means that the
empty sequence is ranked inside M , and thus the rank of the tree is less than the ordinal height of M .
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4 Recursive ordinals

Definition An ordinal α is said to be recursive if there is a recursive well order < of ω with

(α;∈) ∼= (ω;<).

We then let ωck
1 be the supremum of the recursive well orders.

Lemma 4.1 A well founded recursive relation on ω has rank1 less than ωck
1 .

Note that a recursive well order of an infinite recursive set will be isomorphic to a recursive well order of
ω and hence have order type less than ωck

1 .

Proof Let S = {(n0, n1, ...nℓ) : ∀i < ℓ(ni+1Rni)}. Set ~n <R ~m if either ~n strictly extends ~m or for i least
with ni 6= mi we have ni < mi. The relation <R now well orders S and hence has rank less than ωck

1 . 2

Definition A tree is said to be recursive if the set of Gödel codes for its elements is recursive as a subset of
ω. A subset of (ωω)n is said to be Σ1

1 if it is the projection of a recursive tree; it is Π1
1 if its complement is

Σ1
1; and it is ∆1

1 if it is both Σ1
1 and Π1

1.

There is another equally good definition of recursive when talking about subset of the hereditarily finite
sets: A ⊂ HF is recursive if it is ∆1 definable over (HF,∈). This agrees with the definition we have used
above, though I will not take the time out to prove that.

We will also need these notions in the context of subsets of ω.

Definition A ⊂ ωm × (ωω)n is Σ1
1 if there is a recursive T ⊂ ωm × (ω<ω)n such that

1. (~k, u0, u1, ..., un) ∈ T implies lh(u0) = lh(u1) = ... = lh(un);

2. T is closed under subsequences, in the sense that if (~k, u0, u1, ...) ∈ T and ℓ < lh(u0) then (~k, u0|ℓ, u1|ℓ, ...) ∈
T ;

3. A equals the set of all (~k, x0, x1, ..., xn−1) ∈ ωm × (ωω)n such that there exists y with

∀ℓ(~k, x0|ℓ, x
1|ℓ, ..., y|ℓ) ∈ T,

.

Exercise 1. If T is a recursive tree on (ω<ω)n+2, then there is a recursive tree S on (ω<ω)n+1 such that

p[S] = pp[T ](=df {~x : ∃y, z((~x, y, z) ∈ [T ]}).

2. The intersection of two Σ1
1 sets is Σ1

1.

3. The union of two Σ1
1 sets is Σ1

1.

1For R a well founded relation on a set S, there will be a canonical ranking function

ρ : S → δ

with ρ(a) = sup{ρ(b) + 1 : bRa}. The sup of the image of ρ is said to be the rank of R.
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Exercise In any reasonable sense, isomorphism is Σ1
1.

For instance, if we view each x ∈ ωω as coding a binary relation ∈x by

n ∈x m⇔ x(2n3m) = 1,

then there is a recursive tree T ∈ (ω<ω)3 such that (x, y, f) ∈ [T ] if and only if f is injective and at each
n,m

n ∈x m⇔ f(n) ∈y f(m).

Then as in the previous exercises we can find a recursive tree S such that (x, y, f, g) ∈ [S] if and only if

(x, y, f) ∈ [T ],

(y, x, g) ∈ [T ],

and
f = g−1,

and conclude that pp[S] is Σ1
1.

Exercise Ill foundedness is Σ1
1. (I.e. the set of x for which there is an infinite sequence (nk)k with

∀k(x(2nk+13nk) = 1)

is Σ1
1).

Exercise Let T ⊂ (ω<ω)n be a recursively enumerable tree. Show there is a recursive tree S with p[S] =
p[T ]. (Hint: Write T as something of the form {(u, v) : ∃kR(u, v, k)}, where R is suitably recursive. Now
make S consist of (u,w) where w encodes a sequence (v(0), v(1), ..., v(ℓ − 1), k0, k1, ..., kℓ−1) such that each
(u|i, (v(0), ..., v(i− 1)), ki) ∈ R.)

Exercise Σ1
1 6= Π1

1. (Hint: This is a variation on the kinds of diagonalization arguments one would use to
say show that not every recursively enumerable set is recursive. One starts by building a universal Σ1

1 subset
of ω × ω, and for that one needs the previous exercise.)

Exercise Σ1
1 is closed under number quantifiers. That is to say, if A ⊂ ωm+1 × (ωω)n is Σ1

1, then so is the

set of (~k, ~x) such that there exists ℓ with (~k, ℓ, ~x) ∈ A and so is the set (~k, ~x) such that for every ℓ we have

(~k, ℓ, ~x) ∈ A. Similarly then for Π1
1 and ∆1

1.

Exercise Truth for countable structures is Σ1
1. (I.e. if we define, as before, ∈x to be the set of all (n,m)

such that x(2n3m) = 1, then for any formula φ in the language of set theory, {(~k, x) : (ω;∈x) |= φ(~k)} is Σ1
1.)

Exercise For ψ a formula of set theory, the set of n ∈ ω such that there exists an ω-model M with

M |= ψ(n)

is Σ1
1. (Here an ω-model is one whose ω is isomorphic to true ω.)

Note for future reference, that if there is some set of natural numbers with a first order definition which
is correctly calculated by all ω-models, then it is necessarily ∆1

1.

Definition We say that a ∈ ωω is Σ1
1 (respectively, Π1

1, ∆1
1) if the set {(n,m) : a(n) = m} is Σ1

1 (respectively,
Π1

1, ∆1
1).
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Exercise For a ∈ ωω the following are equivalent:

1. a is ∆1
1;

2. {a} is ∆1
1;

3. {a} is Σ1
1 (as a subset of ωω).

(Warning: These are not equivalent to a being Σ1
1 – and that non-equivalence follows from Σ1

1 6= Π1
1 for

subsets of ω.)

Theorem 4.2 If T is a recursive tree with [T ] = 0, then it has rank less than ωck
1 .

Proof This follows from 4.1. 2

Theorem 4.3 (The effective perfect set theorem for Σ1
1.) If A ⊂ ωω is Σ1

1, then either it contains a
homeomorphic copy of 2ω or A ⊂ ∆1

1.

A quick clarification: When I say A ⊂ ∆1
1, I mean that every element of A is ∆1

1 as an element of ωω.

Proof This follows from what is going on in the proof of 3.2 using 4.1, but I am going to be rather cavalier
with the details.

First of all we try to define a tree of partial attempts to build a copy of 2ω inside p[T ], where T is a
recursive tree giving rise to A.

Let S consist of all arrays (us, vs)s∈2≤m , some m, where for s, t ∈ 2≤m we have, s, t ∈ T , s < t implies
(us, vs) < (ut, vt), and s ⊥ t implies us ⊥ ut. We define R to be the relation of extension on S – where we
say one array extends another when it has larger domain and agrees on the domain in common. If A does
not contain a perfect set, then the proof of 3.2 shows that R is well founded. Then by 4.1 we get that there
is a bound δ < ωck

1 for the rank of R.
Now as before we let Tα+1 be the set of (u, v) ∈ T \ Tα such that there exist extensions which are

incompatible in the first coordinate:
(u, v) < (u0, v0), (u1, v1),

u0 ⊥ u1.

It then turns out, and this can be seen by careful inspection of the definitions, that the transfinite recursion
finishes by stage δ. That is to say, Tδ = T .

Then the proof of 3.2 gives that each x ∈ p[T ] will be uniformly first order definable over

(T \ Tα;<)

from some (u, v) in T and some α ≤ δ. But for e encoding a recursive well order, <e, of order type α ≤ δ,
it is a relatively routine calculation to show that Tα will be uniformly ∆1

1 definable from e, and then x
will be uniformly definable from <e and (u, v). (Alternately, over any ω-model M , we will have that the
transfinite recursion β 7→ Tβ will be correctly calculated for all ordinals in its well founded part. However,
<e is correctly calculated by M , and hence so is Tα. Then x will be uniformly definable over from (u, v)
and <e over M , and we can therefore apply the exercise on existence of ω-models with a certain belief being
Σ1

1.) 2

Theorem 4.4 (Kunen-Martin for Σ1
1) Every Σ1

1 well founded relation has rank less than ωck
1 .

Proof This follows from the proof of 3.3 using 4.1. 2
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5 Admissible sets

Definition A set of the form Lα is admissible if α is a limit and Lα satisfies Σ1 collection. We then also
say that α is an admissible ordinal.

Exercise (i) Any infinite cardinal is admissible.
(ii) ℵω is admissible, but Lℵω

fails Σ2 collection.

Definition For M a model with of a binary relation, ∈M , we let O(M) be the sup of the ordinals in the
well founded part. More precisely, O(M) is the sup of those ordinals α such that there exists some a ∈ M
with

(α,∈) ∼= ({b : b ∈M a},∈M ).

Lemma 5.1 If M is a model of ZFC, then O(M) is admissible.

Proof First of all we may assume the well founded part of M is actually a transitive set. If M is well
founded, then there is nothing to prove, so assume M is ill founded.

If the lemma fails, then there would be some set X in the well founded part of M and some Σ1 formula
ψ such that at each x ∈ X there is a least ordinal βx < O(M) such ψ(x, βx) and the βx’s are unbounded
in O(M). But then M would have the have the ability to define the cut corresponding O(M) and would be
confronted by its own ill foundedness. 2

Of course assuming M |= ZFC is something of an over kill in the assumptions of the lemma.

Theorem 5.2 ωck
1 is admissible.

Proof It is not hard to see that for any set Y ∈ Lωck
1

there is a ∆
L

ωck
1

1 surjection from ω onto Y . Thus it

suffices for us to consider the case that ψ ∈ Σ1 and for all n ∈ ω there is some α < ωck
1 such that

Lα |= ψ(n).

Let B be the set of pairs (n, e) such that:

1. n, e ∈ ω;

2. e is a code for a recursive linear <e such that there is a model M whose ordinals are isomorphic to <e
and satisfies the statements:

(a) V = L,

(b) ψ(n), and

(c) for all α, Lα |= ¬ψ(n);

moreover <e also has the property that

3. for all other recursive linear orderings < we have either:

(a) < is ill founded; or

(b) <e is isomorphic to an initial segment of < e;

(c) there exists a model N whose ordinals are isomorphic to < and satisfies ¬ψ(n).
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Since isomorphism and ill foundedness are both Σ1
1, and we previously observed the closure of Σ1

1 under
number quantifiers, this is a Σ1

1 set of pairs of natural numbers. Moreover our assumptions on ψ imply that
(n, e) ∈ B will always have e coding a well ordering of ω. So we can define a well founded relation on B by
(n, e)R(n′, e′) if <e is isomorphic to a proper initial segment of <e′ . The rank of R must be less than ωck

1

by 4.4. 2

There is an alternative proof of admissibility of ωck
1 based on ill founded models and 5.1. It is not hard to

see that every model of a sufficiently rich fragment of ZFC containing ω must include ωck
1 in its well founded

part. We only need to show that there is some ω model which does not contain the ordinal ωck
1 .

But for any ill founded recursive tree T we know from 4.2 that there is an infinite branch below a node
(u, v) if and only if the rank of the set of extensions of (u, v) is some recursive ordinal. Any ω model will be
able to correctly calculate which nodes have rank some given α < ωck

1 . Hence if it actually has the ordinal
ωck

1 it will be able to form the set of all nodes which have rank less than ωck
1 . Then it will be able to form

the subtree T ′ ⊂ T consisting of nodes not ranked by an ordinal less than ωck
1 – and this tree will have no

terminal nodes.
Thus we have argued that a recursive tree has an infinite branch if and only if every ω model can find a

non-empty subtree which has no terminal nodes – and this reduces Σ1
1 to Π1

1, with a contradiction.

Theorem 5.3 (Spector-Gandy) A ⊂ ω is Π1
1 if and only if it is Σ1 over Lωck

1
.

Proof If A is Π1
1 then membership in A is uniformly reduced to the well foundedness of a recursive tree,

which by the proof of 3.1 and 4.2 is Σ1 over any admissible model containing the tree.
Conversely, if ψ is a Σ1 formula defining A, then n ∈ A if and only if there is a recursive linear ordering

<e such that:

1. <e is well ordering, and

2. every M |= V = L whose ordinals are isomorphic to <e satisfies ψ(n).

Since both these conditions are Π1
1, A will be Π1

1. 2

Corollary 5.4 Lωck
1

fails Σ1 separation.

Proof Otherwise the argument of 3.1 would show that a recursive tree is non-empty if and only if there is
an infinite branch in Lωck

1
, which by 5.3 would reduce Σ1

1 to Π1
1. 2

The above steps allow certain generalizations by relativizing to a real.

Definition For x ∈ ωω, ωx1 is the sup of the recursive in x ordinals – i.e. those ordinals for which there is a
recursive in x well ordering of the same order type.

Definition A structure of the form Lα[x] is admissible if α is a limit ordinal and Lα[x] satisfies Σ1 reflection.

As well as all the previous results generalizing in a straight forward way, we also obtain a more powerful
form of Spector-Gandy:

Theorem 5.5 Let A ⊂ ωω. Then A is Π1
1 if and only if there is a Σ1 formula such that

x ∈ A⇔ Lωx
1
[x] |= ψ(x).

Theorem 5.6 Every countable Σ1
1 set is included in Lωck

1
.

Proof In the case that the Σ1
1 set is countable, admissibility allows us to complete the derivation process of

3.2 inside Lωck
1

. 2

Exercise Lωck
1
∩ ωω equals the ∆1

1 elements of ωω.

10



6 Separation and uniformization

Theorem 6.1 Any two disjoint Σ1
1 sets can be separated by a ∆1

1 set.

In other words, if we have A,B Σ1
1 subsets of a space such as ωω, then there is a ∆1

1 D which includes A
and avoids B.

Proof This follows from Spector-Gandy, using the uniformization principles which hold for Σ1 inside the
constructible and relatively constructible universes.

Let ϕ be a Σ1 formula such that x /∈ A if and only if there is some α < ωx1 such

Lα[x] |= ϕ(x).

Let ψ be a similar formula for x /∈ B.
The assumption of disjointness imply that the complements of A and B cover ωω, and thus for each x

that there is some α < ωx1 with
Lα[x] |= ψ(x) ∨ ϕ(x).

Now let C be the set of pairs (x, e) such that the eth recursive in x linear order is a recursive well order of
order type α with α least such that

Lα[x] |= ψ(x) ∨ ϕ(x).

Exactly the same calculation as in the proof of 5.2 shows that this is a Σ1
1 set. But then likewise appealing

to the proof of the effective version of Kunen-Martin shows that there is a bound δ < ωck
1 such that for each

(x, e) in C the order type of the eth recursive in x linear order is equal to some ordinal less than δ. Thus,
for each x we have

Lδ[x] |= ψ(x) ∨ ϕ(x).

Then we let D be the set of x such that
Lδ[x] |= ¬ψ(x).

2

Definition We equip ωω with the product topology obtained by its natural identification with
∏
ω ω. We

then equip the product spaces of the form (ωω)n with the resulting product topology. We say that a set in
one of these space is Borel if it appears in the smallest σ-algebra containing the open sets.

Exercise If α is a countable ordinal and ψ is a formula in the language of set theory, then the set of x for
which

Lα[x] |= ψ(x)

is Borel.

Thus the proof of 6.1 shows a bit more:

Theorem 6.2 Disjoint Σ1
1 sets can be separated by Borel sets, and hence every ∆1

1 set is Borel.

Definition A function from ωω to ωω is ∆1
1 if it is ∆1

1 as a subset of ωω × ωω.

It is an easy manipulation of quantifiers to see that the pullback of a basic open set, or even a ∆1
1 set,

under a ∆1
1 function is ∆1

1. Hence a ∆1
1 function will be Borel measurable, in the sense of pulling back open

sets to Borel.

11



Theorem 6.3 Let A ⊂ ωω×ωω be Σ1
1 such that for each x there are only countably many y with (x, y) ∈ A.

Then we can find countably many ∆1
1 functions, (fn)n, such that for each x the set {fn(x) : n ∈ ω} includes

Ax, the set of y such that (x, y) ∈ A.

Proof For each x there will be a uniformly recursive in x tree T x such that p[T x] equals Ax. Inside each
admissible structure containing x we will be able to form the sequence of trees appearing in 3.2 or 4.3, and
come to some δ < ωx1 and subsets (T xα )α≤δ – and by analogy with the situation from before, T xδ will be
empty, T xα+1 will be set of nodes which admit a future splitting in the first coordinate inside T xα , and at
limit stages we are taking intersections. The assignment of (T xα )α≤δ to x will be uniformly Σ1 (and hence
∆1)

2 over any admissible containing x, and moreover, harking back to the earlier arguments, we will have
Ax ⊂ Lδ+ω[x].

Lωx
1
[x] realizes that all its initial segments are countable. Thus we can effectively enumerate the reals in

Lδ+ω[x] in a manner that is uniformly ∆1 over Lωx
1
[x]. But thus by Spector-Gandy we uniformly obtain a

∆1
1 enumeration. 2

In the case that the set A is ∆1
1 we obtain a strengthening.

Theorem 6.4 (Effective version of Lusin-Novikov) Let A ⊂ ωω × ωω be a ∆1
1 set with every Ax countable

and non-empty. Then we can find a countable sequence of ∆1
1 functions, (gn)n such that at each x,

Ax = {gn(x) : n ∈ ω}.

Proof In the case that each |Ax| = ℵ0, we get Borel functions (fn)n as in the last theorem with each
Ax ⊂ {fn(x) : n ∈ ω} and then the fact that A is Borel allows us to set

gn(x) = fm(x),

where m least such that fm(x) 6= g0(x), g1(x), ..., gn−1(x). The case with some sections finite, but with the
complication that we may have to cater for some n with gk(x) = gn(x) all k ≥ n. 2

Exercise (“Boundedness”) Define, as before, ∈x to be the set of all (n,m) such that x(2n3m) = 1. Let WO
be the set of x ∈ ωω such that ∈x well orders ω. Show that if A ⊂ WO is Σ1

1, then there is δ < ωck
1 such

that for every x ∈ A there exists α < δ with

(α;∈) ∼= (ω;∈x).

Many times people will use term boundedness in a loose and sweeping way to describe any of the myriad
arguments where some collection of ordinals get bounded below ωck

1 or ω1. The arguments in which we used
Kunen-Martin could have been reorganized to directly follow from this exercise, which in turn can be given
an independent proof – roughly speaking, if we had a Σ1

1 class C of well ordered structures with unbounded
rank, then we could reduce well foundedness of a recursive trees into the existence of a ranking function into
some element of C, with a reduction of Π1

1 to Σ1
1.

7 Extended aside: These theorems in the bold faced case

It probably makes sense to spend a bit of time showing how the theorems of classical descriptive set theory,
in the sense of Lebesgue, Lusin, and Suslin from the early 1900’s, can at this point be derived for general
Polish spaces.

2A set is ∆1 if both it and its complement are Σ1. It is a standard manipulation of quantifiers argument to see that at Σ1

function from a ∆1 set must be ∆1

12



Notation A set is said to be Σ1
1(x) if it is the projection of a tree which is recursive in x. We then say a

set is Π1
1(x) if its complement is Σ1

1(x), and ∆1
1(x) if it is in the union of the two classes. Similarly Π∼

1
1 is the

complement of Σ∼
1
1, and ∆∼

1
1 = Π∼

1
1 ∩ Σ∼

1
1.

Since every subset of ω is recursive in some element of ωω we obtain

Σ∼
1
1 =

⋃

x

Σ1
1(x).

We also obtain obvious parallels of theorems from the last two sections by relativizing Σ1
1 to Σ1

1(x), ω
ck
1 to

ωx1 , Lωck
1

to Lωx
1
[x], and so on.

Notation For ~s = (s0, ..., sn−1) ∈ (ω<ω)n, we let N~s be the set of ~x ∈ (ωω) such that each xi ⊃ si.

We have equipped (ωω)n with the product topology, and the sets of the form N~s form a basis for this
topology.

Lemma 7.1 Every closed is Σ∼
1
1. Every open set is Σ∼

1
1.

Proof For notational simplicity, let us work just for the space ωω.
First for C closed, let S be the collection of all s ∈ ω<ω such that Ns is disjoint from C. Then let T be

the collection of of all u ∈ ω<ω such that u does not extend and s ∈ S. It follows that

C = [T ] =df {x ∈ ωω : ∀ℓ(x|ℓ ∈ T )},

and it is trivial then to find a tree T ′ with p[T ′] = [T ].
Now for open sets, since Σ∼

1
1 is closed under number quantification, it suffices to show to prove the lemma

for basic open sets. However since these are all clopen, it reduces to the last paragraph. 2

Lemma 7.2 Every Borel set is Σ∼
1
1.

Proof This follows from the last lemma and the closure of Σ∼
1
1 under number quantification in light of the

fact that the Borel sets can be generated from the open and closed sets by the operations of countable union
and intersection. 2

Corollary 7.3 ∆∼
1
1 equals Borel.

Proof Using the last lemma and 6.2. 2

Definition A separable topological space is said to be Polish if it admits a complete metric. The Borel
subsets of the space are those which appear in the smallest σ-algebra containing the open sets.

Theorem 7.4 Any uncountable Polish space contains a homeomorphic copy of 2ω.

Proof Let B be a countable basis for the Polish space X and let d be a complete metric. Let

U =
⋃

{V ∈ B : |V | ≤ ℵ0}.

U is countable and open, so by the assumptions on X the complement C is non-empty, and the definition
of U implies that it will be without isolated points.

That absence of isolated points makes it possible to find an array of open sets, (Vs)s∈2<ω with the
following properties:

13



1. V∅ = X ;

2. each Vs ∩ C 6= ∅;

3. d(Vs) → 0 as lh(s) → ∞;

4. s ⊥ t⇒ Vs ∩ Vt = ∅;

5. s < t⇒ Vt ⊂ Vs.

Then for each y ∈ 2ω there is a unique xy ∈
⋂
ℓ Vy|ℓ . The resulting function

y 7→ xy

will be a continuous embedding of 2ω into X . The compactness of 2ω implies it will in fact provide a
homeomorphism with its image. 2

Definition A function between two Polish spaces is said to be Borel if the pullback of any open set is Borel.

Exercise If f : X → Y is Borel, then the pullback of any Borel set in Y is Borel.

Definition Given Polish spaces X,Y and Borel subsets B ⊂ X , C ⊂ Y , a bijection

f : B → C

is said to be a Borel isomorphism if the image of any Borel subset of B is Borel and the pullback of any
Borel subset of C is Borel.

Lemma 7.5 Any uncountable Polish space has a Borel subset which is Borel isomorphic to ωω.

Proof In light of the last lemma, it suffices to prove this for X = 2ω. But if we let

f(x) = (0x(0)10x(1)10x(2)....)

then f provides a Borel isomorphism of ωω with the set of elements in 2ω that have infinitely many 1’s. 2

Lemma 7.6 Any Polish space is Borel isomorphic to a Borel subset of ωω.

Proof Fix Polish X with complete metric d. Let (Vs)s∈ω<ω be an array of open sets such that:

1. V∅ = X ;

2. d(Vs) → 0 as lh(s) → ∞;

3. Vs =
⋃
n∈ω Vsan (where san is the result of adjoining n to the end of the sequence s).

For each x ∈ X we can then let f(x) be the union of all the lexicographically minimal sequences s for
which x ∈ Vs. In other words, s ⊂ f(x) if and only if for all t with lh(t) ≤ lh(s) and for all i < lh(s) we
have either:

1. s|i 6= t|i, or

2. s(i) ≤ t(i), or

3. x /∈ Vt.
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It is a relatively routine manipulation of quantifiers type argument to see that f [X ] is Borel and f
provides a Borel isomorphism with this set. 2

Theorem 7.7 Any uncountable Polish space is Borel isomorphic to ωω.

Proof This follows from the last two lemmas by a Borel version of the Schroeder-Bernstein argument. 2

Thus every theorem we have proved in the Borel context for ωω and its products holds as well for arbitrary
uncountable Polish spaces. The final act of reframing is to correctly generalize the definition of Σ∼

1
1.

Theorem 7.8 Let X be a Polish space, B ⊂ X a Borel set, and

f : X → (ωω)n

a Borel function. Then f [B] is Σ∼
1
1.

Proof Without loss of generality X = ωω and n = 1. Then let C be the collection of (x, y) ∈ B × ωω with
f(y) = x. C is Borel and hence certainly Σ∼

1
1, so fix some T with p[T ] = C. Note that pp[T ] = f [X ], and

thus it suffices to observe that there exists a tree T ′ with p[T ′] = pp[T ]. 2

Definition For X a Polish space, we say that A ⊂ X is Σ∼
1
1, or analytic, if there is a Polish space Y , a Borel

set B ⊂ Y , and a Borel function f : Y → X with

f [B] = Y.

By the last theorem, this extends our original definition of Σ∼
1
1 for product spaces of the form ωm× (ωω)n.

8 Reduction and reflection

Theorem 8.1 (The recursion theorem) Let (ϕe)e be one of the standard enumerations of partial recursive
functions. Let f : ω → ω be recursive. Then there is an e with

ϕe = ϕf(e).

Proof We use about the sequence (ϕe)e that

(e, n) 7→ ϕe(n)

is partially recursive and that there is an enumeration of (ψe)e of partial recursive functions from ω×ω → ω
such that

(e,m, n) → ψe(m,n)

is partially recursive and that there is an associated total recursive function S : ω × ω → ω such that at all
(e,m, n)

ψe(m,n) = φS(e,m)(n).

Find an index k such that for all m,n

φf(S(m,m))(n) = ψk(m,n).

Then for e = S(k, k) we have

φe(n) = ψk(k, n) = φf(S(k,k))(n) = φf(e)(n).

2
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Theorem 8.2 (Π1
1 reflection) Let A ⊂ ω × ωω be some canonical universal Π1

1 set. Suppose B ⊂ ω is a Π1
1

set with the property that for all n,m

An = Am ⇒ (n ∈ B ⇔ m ∈ B).

Then for every n ∈ C there exist some other k in C with Ak ∈ ∆1
1 and Ak ⊂ An.

Here the statement of the theorem basically says that if we have a property of Π1
1 sets which is Π1

1 in the
indices, then every Π1

1 set with the property contains a ∆1
1 set with that property. The requirement that the

sequence be canonical is simply that it arise from some sufficiently canonical partial recursive enumeration of
trees. For instance if Tn is equal to the set of (u, v) of the same length and all ℓ < lh(u) having φn(〈u, v〉) = 1
(where 〈·〉 is some system of Gödel coding), then A = {(n, x) : x /∈ p[Tn]} would be sufficient for our purposes.

Proof Fix some C = Ak with k ∈ B. Let ϕ be Σ1 and such that

n ∈ B ⇔ Lωck
1

|= ϕ(n).

Then similarly Σ1 θ such that
x ∈ C ⇔ Lωx

1
[x] |= θ(x).

We can first of all find a recursive partial function f such that

x ∈ Af(n)

if and only if x ∈ A and for α least with
Lα[x] |= θ(x)

we have
Lα |= ¬ϕ(n).

Applying the recursion theorem, we obtain some e with

Ae = Af(e).

If e /∈ B then the definitions give Af(e) = C = Ak, but then a contradiction breaks out since k ∈ B and we
already assumed that two indices given rising to the same Π1

1 set must be equal. So e ∈ B. But then we fix
some least δ < ωck

1 with
Lδ |= ϕ(e).

Then
Af(e) = {x : ∃α < δLδ[x] |= θ(x),

which is ∆1
1. 2

Corollary 8.3 Let A,B be as above. Then the set of x such that for all x meets every An with n ∈ B is
Σ1

1.

Proof From the proof above and the effectiveness of the recursion theorem, we recursively obtain from each
k some indices ek, fk which in the event k ∈ B have the properties

1. Aek
∈ ∆1

1,

2. Aek
= ωω \Afk

,

3. Aek
⊂ Ak,
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4. ek ∈ B.

Then the set in question is the collection of x such that for all k we have either:

1. k /∈ B, or

2. x /∈ Afk
.

2

Exercise Show there are A,B ⊂ ω × ωω and C ⊂ ω such that both are Π1
1 and so that {An : n ∈ C}

enumerates the ∆1
1 subsets of ωω and n ∈ C → An = ωω \Bn. (One way: Let C be the set of pairs of codes

for (<,ψ) such that < is a recursive well order of ω and ψ is a formula of set theory. Then let A(<,ψ) be the
set of x such that for α the order type of < we have

Lα[x] |= ψ(x).)

Exercise (Π1
1 reduction) Let A and B be Π1

1. Show there are Π1
1 sets A0 ⊂ A, B0 ⊂ B with A0 ∩ B0 = ∅

and A0 ∪B0 = A ∪B. (For instance when the Σ1 formulas ψ, θ define A,B uniformly over admissible sets,
let A0 be the set of x for which there exists α < ωx1 with Lα[x] |= ψ(x) ∧ ¬θ(x) and B0 be the set of x for
which there exists α < ωx1 with Lα[x] |= θ(x) and for all β < α Lβ[x] |= ¬ψ(x).)

9 Barwise compactness

Definition Given a language L we use L∞,ω to to denote the result of closing the class of atomic formulas
under the first order operations of negation and existential and universal quantifiers, as well as conjunctions
and disjunctions of arbitrary size.

Infinitary logic differs from traditional first order logic in that the notions of proof theoretical and se-
mantical consistency may diverge. We clarify the meaning that consistency will take for this paper.

Definition A proposition ψ ∈ L∞,ω is consistent if in some generic extension there exists a model for ψ.

It is an easy absoluteness argument to see that any two transitive models satisfying a sufficiently large
fragment of ZFC in which ψ is hereditarily countable will agree as to whether it has a model. Thus consistency
is ∆1 in the Levy hierarchy.

For later purposes we need a sharper result: Consistency in our sense is uniformly Π1 over any admissible
structure containing ψ. I will present a game theoretical explication, though one could also work with forcing.

Definition For ψ ∈ L∞,ω let Fψ ⊂ L∞,ω be the fragment generated by ψ. For technical purposes, involving
the usual variants of Henkenization, we will assume that L contains infinitely many constants not appearing
in ψ. Let Gψ be the following closed3 game of length ω: I and II alternate playing elements of Fψ . II can
play any element at all of Fψ, but I’s moves are tightly constrained, and if I is ever unable to make a legal
move then II wins.

1. I must begin with the move ψ;

2. if II plays φ ∨ ¬φ, then I must at the next turn play φ or ¬φ;

3. if I has previously played
∧
α φα and II plays some φβ , then I must immediately respond with φβ ;

3Here closed means that the closed player wins if the game continues forever, and loses if at some finite stage the other side
has already reached a winning position
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4. if I has previously played
∨
α φα and II plays

∨
α φα then I must respond with some φβ ;

5. if I has previously played ¬
∧
α φα and II plays ¬

∧
α φα then I must respond with

∨
α ¬φα;

6. if I has previously played ¬
∨
α φα and II plays ¬

∨
α φα then I must respond with

∧
α ¬φα;

7. if I has previously played ¬¬φ and II plays ¬¬φ, then I must play φ;

8. if I has previously played ∃xφ(x) and II plays ∃xφ(x), then I must respond with φ(c) for some constant
c.

9. at no stage can two of I’s previous moves consist at one move in φ and at another move ¬φ.

II wins if I is ever unable to make a next move in accordance with these requirements. I wins if the game
keeps going for infinitely many turns.

One should think of this game as a interrogation between II and I. I begins by asserting ψ, and then II
steadily asks questions about how I might imagine a model of this proposition to be formed. I wins if the
story continues indefinitely without contradiction; II wins if I’s account is shown at some stage to be absurd.

The next couple of lemmas are well known and standard.

Lemma 9.1 Let ψ,Gψ be as above. Assume ψ is hereditarily countable.
Then ψ has a model if and only if I wins Gψ.

Proof First assume that ψ has a model. Then I wins by simply by responding to each of II’s “questions”
with the answer found in the model.

Conversely, let I have a winning strategy in Gψ. Our assumptions give that Fψ is countable, and so we
can let II make a maximal play which mentions every element of Fψ infinitely often. We take the model which
consists of the collection of atomic propositions asserted at some stage by I. It is then a routine induction
on logical complexity to show that this model satisfies some φ ∈ Fψ if and only if I has at some point played
ψ. 2

Lemma 9.2 Let Pψ be the collection of legal positions in the game Gψ. Then I wins if and only if there is
no

ρ : Pψ → γ ∪ {∞},

for some ordinal γ, such that at each position p ∈ P :

1. if I is to move then ρ(p) = sup{ρ(paφ) : paφ ∈ Pψ};

2. if II is to move then ρ(p) = inf{ρ(paφ) + 1 : φ ∈ Fψ};

3. ρ(〈φ〉) 6= ∞.

Proof First suppose we have such function ρ : Pψ → γ. Note that our first two assumptions give ρ(p) = 0
if and only if it is I’s turn to move and there is no legal move to be made. Thus II can fashion a winning
strategy by driving the ordinal down until it hits zero.

Conversely, let us just attempt to define by induction ρ with the initial requirement that ρ(p) = 0 if it is
I’s move and there is no legal response, and then recursively continuing with

1. if I is to move then ρ(p) = sup{ρ(paφ) : paφ ∈ Pψ} provided all such ρ(paφ) have been given ordinal
values;
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2. if II is to move then ρ(p) = inf{ρ(paφ)+1 : φ ∈ Fψ} provided at least one such ρ(paφ) has been given
an ordinal value.

This resembles the earlier ranking argument at trees, but with a slight additional complication because
the other side gets to move. At stage α we will have defined ρ−1[α+ 1] = {p : ρ(p) ≤ α}.

Once this has been continued as far as it will permit, we set ρ(p) = ∞ if p has not previously been
assigned an ordinal value. By assumption, ρ(〈ψ〉) = ∞, and I’s winning strategy is to always play to keep
ρ(p) = ∞. 2

Lemma 9.3 There is a Π1 formula Φ such that for any ψ ∈ L∞,ω and admissible M containing ψ,

M |= Φ(ψ)

if and only if ψ is consistent.

Proof By 9.1, it suffices to see I winning Gψ is uniformly Π1 over M, and this in turn follows from the
proof of 9.2. Inside the admissible we can recursively define

α 7→ ρ−1[α+ 1]

using the description from before. This will be a ∆1 recursion, and hence defined by a ∆1 formula over M,
and hence total and calculated the same in M as in V . It follows from the definition of admissibility that
ρ(p) = ∞ if and only if there is no α ∈ M with ρ(p) = α, and this statement itself is Π1 over M. 2

Lemma 9.4 Let M be admissible and T ⊂ L∞,ω ∩ M be Σ1 over M. Suppose that every X ∈ M with
X ⊂ T is consistent.

Then T is consistent.

Proof Since our definition of consistency is absolute between generic extensions, we may assume M count-
able.

We can give a direct game theoretic proof, where the strategy of the first player is to always maintain
that the run of moves so far along with T preserves the property that any subset inside M is consistent in
our sense. Using that inconsistency is Σ1, if I ever reaches a position where every legal move p has some
corresponding Xp ⊂ T , Xp ∈ M which gives rise to an inconsistent collection, then we can collect them
together to show that there was already a single X ∈ M which witnesses inconsistency. 2

There are other results which we can obtain with this technique.

Lemma 9.5 Let L,L′,L′′ be non-empty languages with L = L′ ∩ L′′. Let φ′ ∈ L′
∞,ω , φ

′′ ∈ L′′
∞,ω with

φ′ ⇒ φ′′. Then there is φ ∈ L∞,ω with
φ′ ⇒ φ⇒ φ′′

(i.e. φ′ ∧ ¬φ and φ ∧ ¬φ′′ are both inconsistent).

Proof Suppose instead there is no such interpolant.
We define a game Gφ′,¬φ′′ , a variant of Gψ given earlier. At each turn II can plays some τ ′ ∈ L′

∞,ω and
some τ ′′ ∈ L′′

∞,ω. I then responds with some σ′ ∈ L′
∞,ω and some σ′′ ∈ L′′

∞,ω. Again we stay inside the
fragments generated by φ′, φ′′. In analogy to before, I begins with φ′,¬φ′′. The conditions from the last
argument are transplanted in the obvious way:-

1. if τ ′ = φ ∨ ¬φ, then I must at the next turn play φ or ¬φ;
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2. if I has previously played
∧
α φα and τ ′ = φβ , then I must immediately respond with σ′ = φβ ;

3. if I has previously played
∨
α φα and τ ′ =

∨
α φα then I must respond with some φβ = σ′;

4. if I has previously played ¬
∧
α φα and τ ′ = ¬

∧
α φα then I must respond with σ′ =

∨
α ¬φα;

5. if I has previously played ∃xφ(x) and τ ′ = ∃xφ(x) then I must respond with φ(c);

6. if I has previously played ¬
∨
α φα and τ ′ = ¬

∨
α φα then I must respond with σ′

∧
α ¬φα;

7. if I has previously played ¬¬φ and II plays τ ′ = ¬¬φ, then I must play σ′ = φ.

Similarly there will conditions which have τ ′′ for τ ′ and σ′′ for σ′.
We have also included the requirement that in the union of all the moves played by I, all the τ ′’s and

τ ′′’s, there is no outright contradiction.
Here one can adapt the usual proof of the Craig interpolation theorem to show the existence of a winning

strategy for the first player: I just maintains that if ρ′ is the conjunction of the propositions in L′
∞,ω asserted

by I and ρ′′ is the conjunction of the propositions in L′′
∞,ω asserted by I, then there is no ρ ∈ L∞,ω such that

ρ′ ⇒ ρ⇒ ¬ρ′′.

We then go to a generic extension in which φ′, φ′′ are hereditarily countable. We let II run the complete
play, asking every question in the respective fragments infinitely often. We get a model of L′∪L′′, since there
is no disagreement on the common parts of the language, by setting M |= ψ, for ψ an atomic proposition,
if at some point in I’s play ψ appears. Following the proof of 9.1 we get

M |= φ′,¬φ′′,

with a contradiction to the hypotheses of the lemma. 2

The proof of the last lemma actually gives an interpolant in any admissible structure M containing φ′

and φ′′: The point is that we can adapt the requirement that there be no interpolant in M. Note moreover
from 9.3 we have that there is a Σ1 formula, Ψ, such that

M |= Ψ(φ′, φ′′, φ)

if and only if φ is an interpolant between φ′ and φ′′.

10 Gandy-Harrington forcing

Definition We let P be the partial ordering of all non-empty lightfaced Σ1
1 sets A ⊂ ωω ordered by inclusion.

Lemma 10.1 For any reasonably generic filter G ⊂ P there will be a unique point

x(G) ∈
⋂

A∈G

A.

Proof The point here is that if A = p[T ] and if for each s ∈ ω<ω we let

As = {x : ∃y ⊃ s((x, y) ∈ [T ]},

then the set DT,s consisting of all B ∈ P which either are included in some Asan or avoid As will be
dense open. If G meets all these kinds of dense open sets, then it will have a unique element in its infinite
intersection. 2
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We can also view this as providing a topology on ωω, whose basis consists of the Σ1
1 sets. This topology

falls short of being Polish, but it has other desirable properties, such as satisfying the Baire category theorem.

Definition A point x ∈ X is low if ωx1 equals ωck
1 .

Lemma 10.2 x is low if and only if for every A ⊂ X in Σ1
1 either x ∈ A or there is some C ∈ Σ1

1 with
x ∈ C and

A ∩ C = ∅.

Proof At each e, let Ae be the set of z such that the eth recursive in z linear order is not a recursive well
order. Apply the statement of the lemma to x and we obtain that either x ∈ Ae, or x is in some Σ1

1 B
which avoids Ae. In the latter case, we obtain by boundedness a δ < ωck

1 such that every z ∈ B has the eth

recursive in z well order of rank less than δ. 2

Theorem 10.3 (Gandy) Every non-empty Σ1
1 set contains a low member.

Proof Force below our non-empty Σ1
1 set, and observe that the generic G will have x(G) satisfying the

conditions of the last lemma. 2

Just for the purposes of illustration of how one might use Gandy-Harrington forcing, let us go through a
proof of the perfect set theorem for Σ1

1 sets.

Theorem 10.4 Let A ∈ Σ1
1. Then either:

1. |A| ≤ ℵ0, and is in fact included in ∆1
1; or

2. A contains a homeomorphic copy of 2ω.

Proof We let B = {x ∈ X : {x} ∈ Σ1
1}, the set arising as the union of all Σ1

1 singletons.
Claim: X \B is Σ1

1.
Proof of claim: Here it is a routine calculation to show that {x} ∈ Σ1

1 if and only if {x} ∈ ∆1
1. From

this one can show by another routine calculation4 that X \B is indeed Σ1
1. (Claim2)

Now there is a split in cases.
Case(I) A ⊂ B.
Then we are immediately finished, since every element of A is a Σ1

1 singleton, and there are only countably
many (lightfaced) Σ1

1 singletons.
Now we go to the other case. Here we will find a way to build a “perfect set” of generic objects in A \B.

This will give us a homeomorphic copy of Cantor space.
Case(II) A \B 6= ∅.
We define an array of elements in P , (ps)s∈2<N , indexed by finite binary sequences, such that

(0) each ps ⊂ A \B; we work below the complicated part of A;
(1) ps ≤ pt for s ⊃ t; that is to say, as the binary sequences get longer, the Σ1

1 sets get smaller;
(2) if s ∈ 2n (i.e. s has length n), then ps ∈ Dn;
(3) for s 6= t of the same length, ps ∩ pt = 0; that is to say, incompatible binary sequences are

associated with disjoint binary sequences.

We can start the construction with

pempty sequence = A \B.

4Usually in these kinds of arguments there will be some step where the set of “complicated points” is shown to be Σ1

1
, even

though it initially looks more complicated. Here it is straightforward calculation, but in general it can be involved, for instance
making use of “Π1

1
reflection.”
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It is routine to diagonalize in to meet the nth dense set at stage n. The part of this that might be problematic
is (3). But here we know that whenever we have some given ps ⊂ A \B, it must contain two elements, or it
would consist of a Σ1

1 singleton and hence be in B; and so we can divide it up by two disjoint open sets.
In the end we define for any infinite binary sequence w ∈ 2N the filter

Gw = {q : ∃n(pw|n ≤ q)}

generated by the conditions associated with the finite initial segments of w.
Each such Gw is “sufficiently generic”, and one can show that the function assigning to w the real defined

by its generic filter,
w 7→ x(Gw),

is continuous. And thus
{x(Gw) : w ∈ 2N}

is a homeomorphic copy of Cantor space. 2

Of course this application may seem rather precious, since we have a far simpler proof. The interest is
the method, since in the context of the theory of equivalence relations, this has been the approach which
has been most fruitful.
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